Einfluss der Schnittgeschwindigkeit auf Schnittkräfte und Werkstückoberfläche

Lernsituation:
Name:
Klasse: Datum:

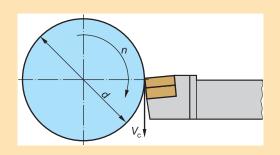
Information

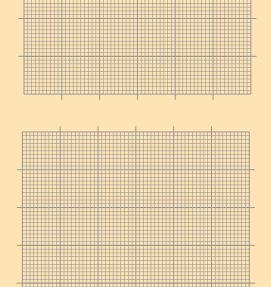
Die Schnittgeschwindigkeit ist die Relativgeschwindigkeit zwischen Werkstück und Werkzeug. Sie stellt eine wichtige Schnittbedingung dar und wird vorwiegend von der Art des Werkstoffs, des Schneidstoffs und der Bearbeitungsart bestimmt.

Planung

	Maschine:	Leit- und Zugspindeldrehmaschine
		Emco MAT – 20D
	Klemmhalter:	PTGNR 2020 K16
	mit Wendeplatten:	TNIMC 160409 Cormot
	•	Rd DIN1013, Ø 50 x 300, C45
		$v_{\rm c}$ = 50 m/min, 100 m/min, 200 m/min
		$f = 0,196 \text{ mm/Umdr.}, a_p = 0,5 \text{ mm}$
	Messgeräte:	elektronisches Schnittkraftmessgerät
		Fabr. Kistler über V24 mit
		PC verbunden,
		Tastschnittgerät Perthometer M2P

Durchführung


Versuche mit unterschiedlichen Schnittgeschwindigkeiten durchführen, dabei Daten für Vorschubkraft, Passivkraft, Schnittkraft aufzeichnen, Eingriffszeit stoppen, Eingangsleistung, Schnittleistung ermitteln, gemittelte Rautiefe (R_2) messen, Cut-off entsprechend dem Vorschub (periodischem Profil) einstellen.


Leistungsmessgerät Wattavi

Auswertung/Bewertung

Drehlänge in mm

v _c in m/min	50	100	200
F _c in N	290	260	240
F_{f} in N	140	102	83
F_{p} in N	193	146	119
R _z in μm	15,6	11,6	10,7
Zeit für Drehl. in s	20	10	5
P in kW	0,24	0,42	0,74
P _e in kW	0,4	0,74	1,7

- 1. Welche Wirkung hat eine höhere Schnittgeschwindigkeit auf die:
- Schnittkräfte? Schnittkraft (F_c), Vorschubkraft (F_f), Passivkraft (F_p)

nehmen leicht ab.

- gemittelte Rautiefe (R₂)? Es wird eine bessere Oberflächenrauheit erzielt.
- erforderliche Antriebsleistung? ... Die Leistungsaufnahme steigt stark an.
- Tätigkeitszeit? Die unbeeinflussbare Tätigkeitszeit verringert sich,

bei Erhöhung von $v_{\rm c}$

- Standzeit? Wegen höherer thermischer Belastung reduziert sich die Standzeit.
- 2. Welche Anforderungen werden an die Schneidstoffe bei hohen Schnittgeschwindigkeiten gestellt?

Schneidstoffe müssen härter und verschleißfester bzw. beschichtet sein.

(SS - HSS - HM - beschichtetes HM - Oxidkeramik - CBN)

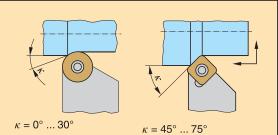
Einfluss des Einstellwinkels auf die Schnittkräfte

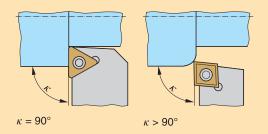
Lernsituation:	
Name:	
Klasse:	Datum:

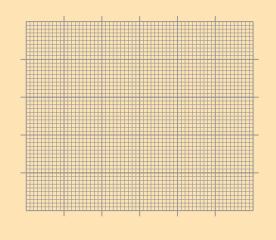
Information

Der Einstellwinkel definiert die Lage der Hauptschneide zur Drehachse. Er beeinflusst den Zerspanungsvorgang.

Planung


Maschine:	LZ-Drehmaschine
	Typ: Emcomat 20 D
Werkzeug:	SWGCR 1616 H06 (κ = 90°)
Ŭ	SWRCR 1616 H06 (κ = 75°)
	SWTCR 1616 H06 (κ = 60°)
	SWDCR 1616 H06 (κ = 45°)
Wendeplatte:	Trigon-Form HM P25 ($r = 0,4$)
	von Firma Komet →keine DIN
Halbzeug:	Rd DIN 1013, Ø 40 mm C45
Messgerät:	Kistler Piezo Schnittkraftmesser
	Perthometer Tastschnittgerät M2P
Kühlmittel:	Aus
Schnittdaten:	$v_{\rm c}$ = 120 m/min
	f = 0,098 mm/Umdr.
	a _p = 2,5 mm




Drehversuche mit den vorgegebenen Werkzeugen und Schnittdaten an demselben Halbzeug durchführen (Drehlänge pro Versuch ca. 20 mm). $F_{\rm c}$, $F_{\rm f}$, $F_{\rm p}$ messen, $R_{\rm z}$ -Wert messen. Spandicke h und Spanbreite b berechnen.

Auswertung/Bewertung

Einstell-	Kräfte in N			Rz	h	b
winkel	F _c	F_{f}	F_{p}			
90°	613	372	59	4,82		
75°	626	362	128	4,79		
60°	643	342	212	5,09		
45°	658	287	322	5,5		

1. Warum ist die Passivkraft bei 90° Einstellwinkel sehr klein und steigt dann bei kleinerem Winkel sehr stark an?

Bei 90° kann $F_{_{\mathrm{p}}}$ nur im Bereich vom Eckenradius wirken, bei kleinem Einstell-

winkel auch im Bereich der Hauptschneide.

n = 955 Umdr./min

2. Welche Folge hat die große Passivkraft F_p bei 45° Einstellwinkel auf das Drehen langer dünner Drehteile? Teile werden evtl. durch Passivkraft abgedrängt und verlieren die Zylinderform.

3. Warum ist der R_z-Wert bei 90° kleiner? ... Nebenschneide schneidet nach.

4. Welche Auswirkung hat die Veränderung des Einstellwinkels auf das Verhältnis h/b, auf die Spanbildung und die Standzeit?

Dünner, breiter Span ergibt längeren Span, der Verschleißangriff wird auf eine

längere Schneide verteilt.

5. Wie lässt sich der kleinere Einstellwinkel begründen?

Kleiner Einstellwinkel κ ist für die Schruppbearbeitung günstig,

weil die spez. Schneidenbelastung kleiner is